143 research outputs found

    Symmetric Dense Inception Network for Simultaneous Cell Detection and Classification in Multiplex Immunohistochemistry Images

    Get PDF
    Deep-learning based automatic analysis of the multiplex immunohistochemistry (mIHC) enables distinct cell populations to be localized on a large scale, providing insights into disease biology and therapeutic targets. However, standard deep-learning pipelines performed cell detection and classification as two-stage tasks, which is computationally inefficient and faces challenges to incorporate neighbouring tissue context for determining the cell identity. To overcome these limitations and to obtain a more accurate mapping of cell phenotypes, we presented a symmetric dense inception neural network for detecting and classifying cells in mIHC slides simultaneously. The model was applied with a novel stop-gradient strategy and a loss function accounted for class imbalance. When evaluated on an ovarian cancer dataset containing 6 cell types, the model achieved an F1 score of 0.835 in cell detection, and a weighted F1-score of 0.867 in cell classification, which outperformed separate models trained on individual tasks by 1.9% and 3.8% respectively. Taken together, the proposed method boosts the learning efficiency and prediction accuracy of cell detection and classification by simultaneously learning from both tasks

    Spatial Positioning of Immune Hotspots Reflects the Interplay between B and T Cells in Lung Squamous Cell Carcinoma

    Get PDF
    Beyond tertiary lymphoid structures, a significant number of immune-rich areas without germinal center-like structures are observed in non–small cell lung cancer. Here, we integrated transcriptomic data and digital pathology images to study the prognostic implications, spatial locations, and constitution of immune rich areas (immune hotspots) in a cohort of 935 patients with lung cancer from The Cancer Genome Atlas. A high intratumoral immune hotspot score, which measures the proportion of immune hotspots interfacing with tumor islands, was correlated with poor overall survival in lung squamous cell carcinoma but not in lung adenocarcinoma. Lung squamous cell carcinomas with high intratumoral immune hotspot scores were characterized by consistent upregulation of B-cell signatures. Spatial statistical analyses conducted on serial multiplex IHC slides further revealed that only 4.87% of peritumoral immune hotspots and 0.26% of intratumoral immune hotspots were tertiary lymphoid structures. Significantly lower densities of CD20+CXCR5+ and CD79b+ B cells and less diverse immune cell interactions were found in intratumoral immune hotspots compared with peritumoral immune hotspots. Furthermore, there was a negative correlation between the percentages of CD8+ T cells and T regulatory cells in intratumoral but not in peritumoral immune hotspots, with tertiary lymphoid structures excluded. These findings suggest that the intratumoral immune hotspots reflect an immunosuppressive niche compared with peritumoral immune hotspots, independent of the distribution of tertiary lymphoid structures. A balance toward increased intratumoral immune hotspots is indicative of a compromised antitumor immune response and poor outcome in lung squamous cell carcinoma

    Systematic Evaluation of the Immune Environment of Small Intestinal Neuroendocrine Tumours

    Get PDF
    BACKGROUND: The immune tumour microenvironment and the potential therapeutic opportunities for immunotherapy in small intestinal neuroendocrine tumours (siNET) have not been fully defined. METHODS: Herein, we studied 40 patients with primary and synchronous metastatic siNETs , and matched blood and normal tissue obtained during surgery. We interrogated the immune checkpoint landscape using multi-parametric flow cytometry. Additionally, matched FFPE tissue was obtained for multi-parametric immunohistochemistry (IHC) to determine the relative abundance and distribution of T-cell infiltrate. Tumour mutational burden (TMB) was also assessed and correlated with immune infiltration. RESULTS: Effector tumour infiltrating lymphocytes had a higher expression of PD-1 in the tumour microenvironment compared to the periphery. Additionally, CD8+ tumour infiltrating lymphocytes had a significantly higher co-expression of PD-1/ICOS and PD-1/CTLA-4 and higher levels of PD-1 expression compared to normal tissue. IHC revealed that the majority of cases have {less than or equal to}10% intratumoural T cells but a higher number of peritumoural T cells, demonstrating an "exclusion" phenotype. Finally, we confirmed that siNETs have a low TMB compared to other tumour types in the TCGA database but did not find a correlation between TMB and CD8/Treg ratio. CONCLUSIONS: Taken together, these results suggest that a combination therapy approach will be required to enhance the immune response, using PD-1 as a checkpoint immunomodulator backbone in combination with other checkpoint targeting molecules (CTLA-4 or ICOS), or with drugs targeting other pathways to recruit "excluded" T cells into the tumour microenvironment to treat patients with siNETs

    Phenotyping of lymphoproliferative tumours generated in xenografts of non-small cell lung cancer

    Get PDF
    Background: Patient-derived xenograft (PDX) models involve the engraftment of tumour tissue in immunocompromised mice and represent an important pre-clinical oncology research method. A limitation of non-small cell lung cancer (NSCLC) PDX model derivation in NOD-scid IL2Rgammanull (NSG) mice is that a subset of initial engraftments are of lymphocytic, rather than tumour origin. / Methods: The immunophenotype of lymphoproliferations arising in the lung TRACERx PDX pipeline were characterised. To present the histology data herein, we developed a Python-based tool for generating patient-level pathology overview figures from whole-slide image files; PATHOverview is available on GitHub (https://github.com/EpiCENTR-Lab/PATHOverview). / Results: Lymphoproliferations occurred in 17.8% of lung adenocarcinoma and 10% of lung squamous cell carcinoma transplantations, despite none of these patients having a prior or subsequent clinical history of lymphoproliferative disease. Lymphoproliferations were predominantly human CD20+ B cells and had the immunophenotype expected for post-transplantation diffuse large B cell lymphoma with plasma cell features. All lymphoproliferations expressed Epstein-Barr-encoded RNAs (EBER). Analysis of immunoglobulin light chain gene rearrangements in three tumours where multiple tumour regions had resulted in lymphoproliferations suggested that each had independent clonal origins. / Discussion: Overall, these data suggest that B cell clones with lymphoproliferative potential are present within primary NSCLC tumours, and that these are under continuous immune surveillance. Since these cells can be expanded following transplantation into NSG mice, our data highlight the value of quality control measures to identify lymphoproliferations within xenograft pipelines and support the incorporation of strategies to minimise lymphoproliferations during the early stages of xenograft establishment pipelines

    Spatial Positioning of Immune Hotspots Reflects the Interplay between B and T Cells in Lung Squamous Cell Carcinoma

    Get PDF
    Beyond tertiary lymphoid structures, a significant number of immune rich areas without germinal center-like structures are observed in non-small cell lung cancer. Here, we integrated transcriptomic data and digital pathology images to study the prognostic implications, spatial locations, and constitution of immune rich areas (immune hotspots) in a cohort of 935 lung cancer patients from the TCGA. A high intratumoral immune hotspot score, which measures the proportion of immune hotspots interfacing with tumor islands, was correlated with poor overall survival in lung squamous cell carcinoma but not in lung adenocarcinoma. Lung squamous cell carcinomas with high intratumoral immune hotspot scores were characterized by consistent upregulation of B cell signatures. Spatial statistical analyses conducted on serial multiplex immunohistochemistry slides further revealed that only 4.87% of peritumoral immune hotspots and 0.26% of intratumoral immune hotspots were tertiary lymphoid structures. Significantly lower densities of CD20+CXCR5+ and CD79b+ B cells and less diverse immune cell interactions were found in intratumoral immune hotspots compared to peritumoral immune hotspots. Furthermore, there was a negative correlation between the percentages of CD8+ T cells and T regulatory cells in intratumoral but not in peritumoral immune hotspots, with tertiary lymphoid structures excluded. These findings suggest that the intratumoral immune hotspots reflect an immunosuppressive niche compared to peritumoral immune hotspots, independent of the distribution of tertiary lymphoid structures. A balance towards increased intratumoral immune hotspots is indicative of a compromised anti-tumor immune response and poor outcome in lung squamous cell carcinoma

    Granulysin, a novel marker for extranodal NK/T cell lymphoma, nasal type

    Get PDF
    Granulysin is a cytolytic protein expressed in cytotoxic T and natural killer (NK) cells. Abnormal serum levels of granulysin in lymphomas with NK and cytotoxic phenotype have been shown to correlate with tumour progression. In this study, we investigated the expression pattern of granulysin in routine sections of normal and reactive lymphoid tissues as well as in a large series of lymphomas. In normal tissues, granulysin labelled a small population of cells that double immunostaining revealed to belong to the pool of cytotoxic T/NK cells. Among lymphoid neoplasms, the highest expression of granulysin (71%) was found in extranodal NK/T cell lymphomas of nasal type (ENKTL). To note is that 29% of ENKTLs, which were negative for one or more of classical cytotoxic markers strongly expressed granulysin. Furthermore, expression of granulysin was observed in rare cases of T cell lymphomas with a cytotoxic phenotype (i.e. ALK-negative anaplastic large cell lymphoma (26%), enteropathy-associated T cell lymphoma (12%) and peripheral T cell lymphoma, NOS (4%)). None of the investigated non-Hodgkin B cell lymphomas, Hodgkin lymphoma and plasma cell myeloma were granulysin positive. The results suggest granulysin as a novel marker for a subset of cytotoxic NK cell derived malignancies and its usefulness is highlighted in those ENKTLs that lack expression of other cytotoxic markers but retain granulysin expression

    Targeting the T cell receptor β-chain constant region for immunotherapy of T cell malignancies

    Get PDF
    Mature T cell cancers are typically aggressive, treatment resistant and associated with poor prognosis. Clinical application of immunotherapeutic approaches has been limited by a lack of target antigens that discriminate malignant from healthy (normal) T cells. Unlike B cell depletion, pan–T cell aplasia is prohibitively toxic. We report a new targeting strategy based on the mutually exclusive expression of T cell receptor β-chain constant domains 1 and 2 (TRBC1 and TRBC2). We identify an antibody with unique TRBC1 specificity and use it to demonstrate that normal and virus-specific T cell populations contain both TRBC1+ and TRBC2+ compartments, whereas malignancies are restricted to only one. As proof of concept for anti-TRBC immunotherapy, we developed anti-TRBC1 chimeric antigen receptor (CAR) T cells, which recognized and killed normal and malignant TRBC1+, but not TRBC2+, T cells in vitro and in a disseminated mouse model of leukemia. Unlike nonselective approaches targeting the entire T cell population, TRBC-targeted immunotherapy could eradicate a T cell malignancy while preserving sufficient normal T cells to maintain cellular immunity

    Exaggerated IL-17A activity in human in vivo recall responses discriminates active tuberculosis from latent infection and cured disease.

    Get PDF
    Host immune responses at the site of Mycobacterium tuberculosis infection can mediate pathogenesis of tuberculosis (TB) and onward transmission of infection. We hypothesized that pathological immune responses would be enriched at the site of host-pathogen interactions modeled by a standardized tuberculin skin test (TST) challenge in patients with active TB compared to those without disease, and interrogated immune responses by genome-wide transcriptional profiling. We show exaggerated interleukin-17A (IL-17A) and T helper 17 (TH17) responses among 48 individuals with active TB compared to 191 with latent TB infection, associated with increased neutrophil recruitment and matrix metalloproteinase-1 expression, both involved in TB pathogenesis. Curative antimicrobial treatment reversed these observed changes. Increased IL-1β and IL-6 responses to mycobacterial stimulation were evident both in circulating monocytes and in molecular changes at the site of TST in individuals with active TB, supporting a model in which monocyte-derived IL-1β and IL-6 promote TH17 differentiation within tissues. Modulation of these cytokine pathways may provide a rational strategy for host-directed therapy in active TB
    • …
    corecore